3 research outputs found

    Molecular dynamics simulations through GPU video games technologies

    Get PDF
    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations

    DrugOn: a fully integrated pharmacophore modeling and structure optimization toolkit

    No full text
    During the past few years, pharmacophore modeling has become one of the key components in computer-aided drug design and in modern drug discovery. DrugOn is a fully interactive pipeline designed to exploit the advantages of modern programming and overcome the command line barrier with two friendly environments for the user (either novice or experienced in the field of Computer Aided Drug Design) to perform pharmacophore modeling through an efficient combination of the PharmACOphore, Gromacs, Ligbuilder and PDB2PQR suites. Our platform features a novel workflow that guides the user through each logical step of the iterative 3D structural optimization setup and drug design process. For the pharmacophore modeling we are focusing on either the characteristics of the receptor or the full molecular system, including a set of selected ligands. DrugOn can be freely downloaded from our dedicated server system at www.bioacademy.gr/bioinformatics/drugon/
    corecore